Hyperspectral leaf spectroscopy reveals the response of beech
(Fagus sylvatica) seedlings from across the species’ range to

simulated drought
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Beech (Fagus sylvatica) is common in Europe and commercially important. However, climate change, including droughts and heatwaves, is likely to change
the distribution of beech and lead to local population declines. For beech to persist, it relies on phenotypic variation underpinned by intraspecific genetic
variation. We conducted a common garden experiment with 184 beech seedlings from 16 European beech populations with known population
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genetic structure and exposed a subset of the seedlings to a short but intense drought lasting two weeks.
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Left: Photo of rain cover used to simulate drought and example seedling with strong leaf discoloration. The TMS-4 soil
moisture sensors showed lower soil moisture for the drought treatment (yellow) compared to the control group (blue).
We also observed larger trees had drier soil on average. Right: Leaf spectra measured with an ASD FieldSpec 4 and a
leaf clip. Spectra strongly varied between provenances and treated vs control seedlings. The spectral data was used to
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derive spectral indices and PROSPECT-D inverse modelled leaf constituents.
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‘Drought response in leaf traits related to water and leaf structure
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B Genetic cluster 1 BN Genetic cluster 2 B Genetic cluster 3 Leaf spectra may pick up multiple physiological leaf changes. We derived log response ratios (LRR) of spectral indices
and PROSPECT-D modelled leaf traits during the drought period for the three identified genetic clusters (n=170
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Kinship matrix based on whole-genome sequencing of all individuals in the study (yellow: high relatedness, blue: between the genetic clusters, though not in directionality. The PROSPECT-D inverse modelled constituents revealed the

: . . . : : strongest effect for anthocyanins, carotenoids and equivalent water thickness. Negative values indicate a reduction in the
low relatedness). We identified three main genetic clusters each encompassing multiple provenances (see

dendrogram). Therefore, we analyzed our data using the genetic clusters as predictors instead of the individual respective trait in response to the drought treatment, positive values an increase. Genetic cluster three showed

. : . . . significant differences in magnitude of the response in several traits. Shown are effect sizes +/- SD.
provenances. Genetic cluster 1 is a mix of central European provenances, genetic cluster 2 mostly consists of

Eastern provenances, genetic cluster 3 is dominated by Spanish and French provenances.

We conclude that leaf spectroscopy is a valuable tool to assess the integrated response of beech seedling to drought.

Acknowledgments: This research project and related results were made possible with the support of the NOMIS Foundation. Special thanks to Hauenstein Rafz, @ N O M I S gﬁmmhan .
notably Linda Binkert, to Ewa Czyz, and the URPP GCB of the University of Zurich. w and Biodiversity

measurements | products | policy




